

山不让尘,川不辞盈。2024 年是互联网进入中国的第 30 个年头,中国金融行业也走过了金融科技和数字化的 10 个年头。
科技金融这篇大文章正方兴未艾,智能金融随着大模型日新月异发展突然按下了加速键。如果将过去一年大模型的发展比作《三体》中描述的“技术爆炸”,正形象地展现出了 AI 领域前所未有的快速变革。
这种爆炸式增长不仅仅是技术参数的简单膨胀,更是整个技术生态、商业应用以及社会影响层面深刻变化的综合体现。在这个发展过程中,我们看到了如浪潮般涌现的新技术核心要素与传统 IT 发展规律的交织:
●摩尔定律的延伸与挑战:虽然摩尔定律近年来面临物理极限挑战,但通过创新架构(如 GPU、TPU)、分布式计算以及算法优化,让大模型的发展有机会遵循类似的加速发展轨迹,变革性实现计算效率和模型规模的双重跃升。
● 安迪 - 比尔定律的演变:在大模型场景下,这一规律体现为模型规模和复杂度的增加,不断驱动着对更强大算力和存储的需求,同时也激发了云计算的快速发展,以确保基础设施能跟上 AI 应用的需求步伐。
今年以来,走遍中华大地拜访过上千家金融机构,我们发现,金融行业并不缺乏大模型应用的场景,但是有限的算力、持续迭代的大模型开源和商业化生态,加之金融行业对数据安全、风险控制、合规性以及精准决策有着极高的要求,使得金融行业的大模型之路进入前所未有的选择陷阱。
金融行业正处于数字化转型和采用云原生技术的关键时期,这一过程中,大模型的引入无疑增加了额外的复杂性,但也带来了前所未有的机遇。
在过去的一年,大模型加持的金融代码能力、金融多模态能力、金融信息阅读理解能力、金融信息抽取分类加工能力、金融风险管理能力在金融行为学、金融市场与投资学、零售金融、公司金融、财富资管、大健康、大投研等等各个金融数字化领域都有了星星之火一样的尝试。
随着大模型技术的成熟,从基于数据集的开发转向基于大规模预训练模型的应用工程体系,我们可以想象未来大模型通过 API 化与云原生环境下的金融业务流程与技术架构的深度整合,从而解决一些从前我们不敢想象的融合问题,比如金融模型应用的成本效率与稳定性,金融知识的准确及专业性、金融合格的严谨可解释性等。
不仅如此,云原生和大模型融合的新范式,非常需要新的大模型应用平台降低从特定领域到广泛场景到 AI 应用的门槛。
此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
大模型是数字转型(DT)时代的产物,标志着人工智能技术的一次重大突破,尤其是在自然语言处理(NLP)、图像识别、推荐系统等领域。这些大模型,如 OpenAI 的 GPT 系列、Meta的 Llama、Google的Gemini,基于Transformer架构,通过消化海量数据集进行预训练,获得了对人类语言、图像等数据的深入理解和处理能力。

AI 大模型:人类知识存储、传承和使用方式的一次重构
在数字转型时代,大模型为企业提供了前所未有的机遇,使其能够通过高效的数据分析和决策,实现业务流程的智能化、优化客户体验和创新产品服务。从金融行业的智能投顾和欺诈监测,到医疗行业的智能诊断和药物发现,再到零售行业的个性化推荐,大模型的应用正深刻改变着传统行业的运作模式和价值链。
在《全域数据“观”》一书中,我们曾断言:“数据的下一站是智能,数据最终会走向与业务系统的数智融合”,数据消费正在由“人”变成“系统”。
未来数据技术将与云原生和智能化全面融合,形成“云数智一体化”服务。
云原生技术栈,为企业带来了资源弹性、异构算力、容器和微服务等技术手段,为业务创新和系统建设提供了高效、敏捷以及成本低、可扩展的解决方案;
数据中台的兴起,让企业将数据库里“不会说话”的表格,转换成指标、标签、因子、特征等数据资产形态,并直接用于分析与业务决策。
现如今,AI 大模型正在以惊人的速度重构各行各业的业务流程与系统产品,一方面云原生为大模型训练与推理提供了资源保障,数据中台为大模型应用提供高质量语料和结构化知识;
另一方面在大模型全面“智能涌现”能力的驱动下,将传统偏零散化的数据能力进一步体系化和智能化,加快 BI+AI 的融合,实现从“洞见”到“决策”,推动企业加速走向“云数智一体化”的终极形态,最终为客户带来更为全新的产品服务体验。


在信息技术领域,无疑地,云计算和人工智能(AI)大模型的快速发展正日益成为推动现代社会进步的两大驱动力。特别是在中国和美国,这两种技术不仅诞生并蓬勃发展,还持续引领着全球技术革命的浪潮。随着时间的推移,大模型与云计算的结合日益紧密,这种融合在推动着科技界走向新的里程碑。
首先,观察全球技术发展格局可以发现,中国和美国无疑是云技术和 AI 大模型诞生与创新的两大中心。这两个国家不仅拥有领先的技术研发实力,还具备广阔的市场应用场景和成熟的产业生态,促进了云计算和 AI 大模型技术的飞速发展,并在全球范围内形成了巨大的影响力。
进一步而言,大模型的迭代进化主要发生在云端。这是因为云计算提供了高度可扩展的计算资源,使得研究人员和开发者能够在无需自建庞大物理基础设施的情况下,进行模型的训练和部署。
云平台上的弹性资源和高效管理工具为大模型的开发和优化提供了理想的环境,极大地加速了 AI 大模型的迭代周期,使得模型能够更快地进化和优化,更好地适应各种复杂的应用需求。
而且,大模型所遵循的规模定律(Scaling Law)规模定律正重塑着算力基础设施。
随着模型规模的不断扩大,其对计算资源的需求也呈指数级增长,这一现象催生了对更高性能、更高效率算力基础设施的需求。
云计算平台通过部署先进的硬件技术、优化计算资源分配和加强数据处理能力来应对这一需求,进而推动了算力基础设施的快速进化。
这种进化不仅满足了当前大模型对算力的高需求,也为未来 AI 技术的持续创新和应用提供了坚实的支撑。
大模型与云计算的紧密结合,不仅体现在中国和美国这两个技术强国的快速发展上,更在于云端成为大模型迭代进化的主战场,以及大模型对算力基础设施的重新塑形。
这种趋势预示着,未来科技的进步将在这样的融合与互动中继续加速,推动人类社会进入一个全新的智能时代。

在当今的数字化时代,大模型技术以其强大的数据处理能力和智能化水平,正逐步成为企业数字化转型的标配。其广泛的应用不仅仅局限于传统的计算中心,更是与小模型、新终端以及数据中台结合,共同构筑起一个多元化部署与互联互通的新生态,极大地深化了对数据资源的挖掘与运用能力。
首先,大模型与小模型的结合体现了模型部署的多元化。大模型因其强大的学习和预测能力,成为许多复杂任务的首选。然而,针对一些对实时性、资源消耗有严格要求的场景,小模型以其轻量级、高效率的特性,更为适合。通过将大模型预训练的强大认知能力与小模型的灵活部署结合,企业能够更高效、更经济地解决广泛的业务问题,实现智能决策和操作的优化。
接着,大模型与新终端的结合拓展了模型链接的多元化。随着物联网 (IoT) 的蓬勃发展,智能终端遍布生活的每一个角落。大模型不再局限于服务器端的运算,而是通过云计算和边缘计算下沉至各种智能终端,如智能手机、智能家居、自动驾驶车辆等。这种变化使得大模型的应用场景得到极大拓展,为用户带来更加丰富、便捷、个性化的智能服务。
最后,大模型与数据中台的紧密结合,促进了图像、音视频、文本等数据集的多元化。数据中台作为企业数据管理和运营的核心平台,为大模型提供了丰富、高质量的数据支持。通过有效地聚合和整合企业内外的各类数据资源,大模型可以在更加多元化的数据基础上进行训练和优化,能够处理和理解更加复杂多变的业务场景,如图像识别、语音视频处理、语言应用等,从而极大地提高了企业的业务处理能力和用户交互体验。
大模型正逐步渗透到企业数字化建设的各个层面,与小模型、新终端以及数据中台等多元化的元素相结合,进一步拓宽了其应用范围,提升了处理效率和智能水平。大模型无处不在,已经成为推动企业数字化转型的关键力量。

大模型技术的崛起已成为推动企业级市场向深度化、产业化、垂直化方向发展的关键动力。企业正越来越倾向于将这一技术作为核心驱动力,深入挖掘其在特定行业中的应用价值和潜力,进而实现智能化升级与业务创新。
首先,大模型在企业级市场中的深度化应用成为一种不可逆转的趋势。它们不仅被应用于优化传统的数据处理和分析流程,更在预测分析、个性化服务、自动决策制定等领域中展现出强大的能力。这种深度化应用的背后,是企业对于数据价值认知的提升以及对于操作效率和决策质量改进的需求。
“小切口,大纵深”的发展策略,正加速大模型在特定行业中的垂直化和产业化落地。企业通过聚焦于行业的细分领域,利用大模型深耕特定的痛点和需求,不仅提升了解决方案的适配性和有效性,也推动了整个行业的智能化水平。这种策略的实施,充分显示了大模型在解决复杂行业问题时的独特优势,促进了技术与行业深度融合,实现了产业升级。
企业间的开放新形态,特别是在金融领域涌现的新的 Open Banking 模式,为大模型技术的应用开辟了更加广阔的舞台。Open Banking 带来的数据共享和 API 开放不仅有利于现有金融服务的增值,还为金融科技创新和跨行业合作打开了大门。这为大模型技术的应用和发展提供了更加广阔的舞台和应用场景。
大模型技术在企业级市场的崛起,不仅预示着企业对于数据和智能的更深层次应用和挖掘,也引领了向产业化、垂直化方向的战略发展。

近段时间以来,大模型正在经历功能性能力的快速增长和重大突破,其中多模态、Agent模式以及 Assistant API 成为了推动这一进程的关键力量。这些技术革新不仅扩展了大模型在不同领域的应用范围,还为人机交互和应用开发带来了新的可能。
多模态技术的出现和成熟拓展了大模型的广度,让机器能够同时处理和理解文本、图像、音频等多种类型的数据,实现了对人类沟通方式的更全面理解。这标志着 AI 从处理单一类型数据向综合理解不同数据类型的重大进步。多模态大模型在提升信息获取的全面性和准确性方面展示了巨大潜力,极大地丰富了 AI 在自动化内容创作、跨媒体信息检索、以及增强现实等方面的应用场景。
Agent 模式的崛起,成为人类与 AI 协作的一种重要方式。在这种模式下,AI 可以作为一个个体(agent),拥有自我学习和自主决策的能力,在特定的环境中根据既定的目标执行任务。这不仅表明了 AI 的工作模式正变得更加智能化和个性化,也为人类提供了强大的助手,从简单的数据分析到复杂的决策制定,AI Agent 能够有效地辅助人类完成各种任务,推动人机协作进入新的阶段。
Assistant API 的推出,为开发者提供了全新的能力,大幅降低了开发门槛。通过简单的API 调用,开发者可以轻松地将大模型的强大功能集成到自己的应用或服务中,无需深入了解模型内部的复杂机理,即可搭建出智能化程度高、用户体验好的应用产品。这种开放的、低门槛的开发方式,不仅加速了创新应用的推出,也让更多企业和个人能够享受到 AI 技术带来的红利。

随着大模型的广泛应用,对隐私和数据安全的重视程度日益增强。企业和研究机构正在通过实施一系列措施,来加强对用户数据的保护,确保信息安全和隐私被妥善处理。这些措施的核心在于构建一个有效、可靠的数据管理及隐私防护框架,确保大模型安全评估体系的全面性,并解决 AI 工作的可解释性问题。
有效的数据分类分级制度成为奠定数据管理及隐私防护框架的基础。通过对数据进行系统的分类和分级,明确不同类别数据的处理要求和安全标准,可以更加有针对性地制定保护措施。
这种方法不仅有助于提升数据处理的效率和精准度,也有利于识别和保护那些最敏感和价值最高的数据,从而有效减少数据泄露和滥用的风险。

这套体系应涵盖大模型训练、部署、应用生命周期的各个阶段,从数据的收集、存储、使用到销毁等,每个环节都应进行严格的安全审查和评估。通过定期进行安全审计、漏洞扫描和风险评估等活动,可以及时发现和修复安全漏洞,强化系统的安全防护能力,减轻外部攻击和内部泄露的风险。
随着大模型应用到越来越多的场景,其工作的可解释性问题越来越受到重视。大模型,特别是 transformer 的架构被认为是“黑盒”,难以解释其决策逻辑和过程。
增强 AI 工作的可解释性不仅有助于建立用户对 AI 决策的信任,也是确保模型公平、无偏见的关键。通过开发和应用新的解释性技术和方法,让 AI 的决策过程更加透明,可以有效提升模型的公正性和安全性,减少错误决策和偏差带来的风险。


