
1. 中性点与零点、中性线与零线的区别

(像PE线一样重复接地的零线才可以用来做保护用,叫做PEN)
最容易理解的解释是:
2. 其实地线不止保护接地一种,下面介绍地线

② 保护接地为防止人们在使用家电及办公等电子设备时发生触电事故而采取的一种保护措施。家用电器和办公设备的金属外壳都设有接地线,如其绝缘损坏外壳带电,则电流沿着安装的接地线泄入大地,以达到安全的目的,否则会给人身安全造成危害。用电规程规定保护接地电阻应≤4Ω,而人体的电阻一般大于2000Ω,根据欧姆定律,绝缘损坏时通过人体的电流仅为总电流的1/500,从而起到保护作用。(电压越高,人体电阻越小,也就是说,在大电压的情况下,很有可能你成了地线,电流回从你的身体上泻下)
③防雷击接地为防止在雷雨季节,高大建筑物,各类通信系统以及架于建筑物上的各种天线和其它一些设施被雷击,需加装避雷针,然后用导线将其引到安装的防雷击接地系统。
④防电磁辐射接地在一些重要部门为防止电磁干扰,对电子设备加装屏蔽网,安装的屏蔽网要接入相应的接地系统,并要求接地电阻≤4Ω。
三相五线制的做法一般有两种: 一是将变压器的中性线接地引出地面,分成二根,一根为工作零线并保持绝缘,一根为保护接零与外壳相接。这就是所说的TN-S系统。
另一种做法是将变压器中性点接地引出地面,采用三相四线制的方式,送到用电点将零线重新接地,后分成二根:一根为工作零线,并保持绝缘。另一根则为保护零线,与外壳相接。这就是所说的TN-C-S系统。这二根线实际上是更好的接零保护方式,它结合了保护接零和保护接地的优点。即它能够免除由于三相负荷不平衡造成的接零设备的带电现象,又能限制漏电电压于安全范围。它的关键是从一开始分线后就不能相连。一相连就又变为接零保护方式(IT)。

接地和接零本来就很复杂。零线并不是单纯的用来“工作”,在TN系统中,就有保护接零,即设备外壳接零线,用于保护。TN-S系统有专用的保护零线,即保护零线和工作零线分开,而TN-C则是工作零线和保护零线在一起(PEN),TN-C-S时前端公用,后边分开;TT系统中的零线才是工作零线,在TT系统中,设备外壳接地,属于保护接地;总之,保护接地用于不接地系统中,而保护接零则一般用于接地系统中。
如果变压器中性点接地的话零线应该基本不带电的(最多是电流在线阻上的压降,一般不大)。正常工作时零线是允许电流通过的。接地没有工作电流。
家用三角插头和插座里的接地线和零线绝对不能连接在一起!
这主要出于安全原因,因为现在很多"电工"接线不按要求,零线和相线随意换位,很多家电外壳都接地.后果可想而知。
用TN-C系统地和零可接在一起,用TN-S系统请不要接在一起,因为TN-C工做零线,保护地线就是一根,TN-S系统就不一样了,它俩在变压器中心点就分开了,一后就没有电的联系了,为的是零点不漂移。接地线是系统保护,零线是系统封装。
这个问题最好从系统设计来讲,接地线和零线都可以作为电流卸载线,它们又有所不同,接地线是系统对地卸载点,零线是系统内部卸载点。一个系统中可以使用放电电阻来卸载,也可以通过接地来卸载,以三相电为例,以前国外都是三相五线制,即三相火线、一根零线、一根地线;国内都是三相四线制,即三相火线、一根地线(现在也改为三相五线制),在企业变电站也是将变压器的次级零线接地,这样做的好处是当三相负载不平衡时,相电压是平衡的,因此不会对设备电机造成损坏。但是现代系统设计理念不是这样的,他强调每一个系统模块都是独立的,即零线不可以接地,这样系统模块在走模拟信号时才能保证系统不串信号,现在许多设备控制都走数字信号似乎可以不考虑这些,但一些功率器件或功率模块如果对信号比较敏感则还要考虑系统模块的独立封装的问题,既用隔离变压器将零线和地线分开。
零线与地线在三相五线制或三相四线制中使用时,关键看负载前有无漏电开关,若有漏电开关,零线与地线肯定不能混淆!没有漏电开关的话,地线与零线其实是一回事!
其实零线是我们国家的习惯,国外没有零线的说法,电气中记得有3种线L(相线=火线)、N(中性线)、PE(保护线),L和N是带电的,PE是不带点导体。记住这分类就不会混淆了,我们现在常说的零线并不单指中性线N,在TN-C系统中零线还指PE线和N线(即PEN线),所以零线称法很容易让我们初学时候混淆。所以建议我们知道零线这个国内常用的词的代表意义,但是自己只记住L、N、PE线,这样绝对不会混淆的。
3. N线接地还是PE线接地?
现实中部分电气施工人员对TN—S系统中重复接地的有关问题及要求不甚了解,在实际施工中出现一些问题。集中表现为:就TN—S系统的重复接地问题中是对N线重复接地,还是对PE重复接地莫衷一是,提法不明确。本文就这一问题作简要分析。
②当相线断线与大地发生短路时,由于故障电流的存在造成了PE线电位的升高,当断线点与大地间电阻较小时,PE线的电位很有可能远远超过安全电压。这种危险电压沿PE线传至各用电设备外壳乃至危及人身安全。而进行重复接地以后,由于重复接地电阻与电源工作接地电阻并联后的等效电阻小于电源工作接地电阻,使得相线断线接地处的接地电阻分担的电压增加,从而有效降低PE线对地电压,减少触电危险。
③PE线的重复接地可以降低当相线碰壳短路时的设备外壳对地的电压,相线碰壳时,外壳对地电压即等于故障点P与变压器中性点间的电压。假设相线与PE线规格一致,设备外壳对地电压则为110V。而PE线重复接地后,从故障点P起,PE线阻抗与重复接地电阻RE同工作接地电阻RA串联后的电阻相并联。
在一般情况下,由于重复接地电阻RE同工作接地电阻RA串联后的电阻远大于PE线本身的阻抗,因而从P至变压器中性点的等效阻抗,仍接近于从P至变压器中性点的PE线本身的阻抗。如果相线与PE线规格一致,则P与变压器中性点间的电压UPO仍约为 110V,而此时设备外壳对地电压UP仅为故障P点与变压器中性点间的电压UPO的一部分,可表示为:UP=UPO×RERA+RE假设重复接地电阻RE为10Ω,工作接地电阻RA为4Ω,则UP=78.6V。
①将N线和PE线分别重复接地仅比PE线单独重复接地多一项作用,即可以降低当N线断线时产生的中性点电位的偏移作用,有利于用电设备的安全,但是这种作用并不一定十分明显,并且一旦工作零线重复接地,其前侧便不能采用漏电保护。
②如果要将N线和PE线分别重复接地,为保证PE线电位稳定,避免受N线电位的影响,N线的重复接地必须与PE线的重复接地及建筑物的基础钢筋、埋地金属管道等所有进行了等电位连结的各接地体、金属构件和金属管道的地下部分保持足够的距离,最好为20m以上,而在实际施工中很难做到这一点。



