推广 热搜: 采购方式  滤芯  甲带  气动隔膜泵  减速机  减速机型号  带式称重给煤机  履带  无级变速机  链式给煤机 

PRL速递:AI 学习玩弹簧玩具——从轨迹到通用动力学的元学习

   日期:2023-08-18 16:52:10     来源:网络整理    作者:本站编辑    评论:0    

关键词:人工智能,泛化能力,隐空间动力学,神经常微分方程

文题目:
Metalearning Generalizable Dynamics from Trajectories
论文地址:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.067301

像许多职业一样,物理学家正在尝试利用人工智能(AI)来辅助工作——希望不会被 AI 取代。在这个方向上,研究人员开发出一种 AI 算法,可以分析一组物体的运动,如摆动的钟摆或弹跳的弹簧玩具,然后利用这些信息来建立通用模型,分析这些系统上的作用力。这种方法可以推广到此前未经研究的物体,速度比其他不试图泛化的 AI 方法快100倍。

物理学家之前已经表明,AI 算法可以自动发现复杂数据中的隐藏关系。然而,对这些算法的一个常见批评是它们太过具体,只针对一种特定系统。这项最新研究提出一种可解释的元神经常微分方程(interpretable meta neural ordinary differential equation,iMODE)方法,用于从多个具有不同物理参数的动力系统的轨迹中快速学习(非参数特定的)通用动力学。

具体而言,该方法采用一种双层优化框架——外层捕捉研究的动力系统实例的共同力场形式,内层适应个体系统实例——来学习元知识,即动力系统实例的力场泛函变化,而无需知道物理参数。先验物理知识,例如保守力场和欧几里德对称性,可以作为归纳偏差方便地嵌入神经网络架构中。借助学习到的元知识,该方法可以在几秒内对未知系统建模,并且可以反向揭示关于系统物理参数的知识,利用观察轨迹来“测量”未知系统的物理参数。

在其中一个例子中,研究人员向算法提供一组轨迹,如下落的弹簧玩具的位置和速度,每个弹簧玩具刚度不同。该算法分析了这些轨迹,然后构建了一个具有可调参数的通用模型,使其能够在约一分钟时间内分析任何弹簧玩具的运动,即使是不在其训练集中的弹簧玩具。对于更简单的系统,如单摆和振荡电路,分析可能只需几秒钟。研究团队预计,这种方法可以应用于不同介质中生物细胞的机械分析,或者用于在快速变化的环境中控制机器人。

图1. 根据估计力场预测系统的轨迹。

本文编译自:https://physics.aps.org/articles/v16/s119


编译|梁金


AI+Science 读书会


详情请见:
人工智能和科学发现相互赋能的新范式:AI+Science 读书会启动


大模型与生命医学:

AI + Science第二季读书会启动


详情请见:

大模型与生物医学:AI + Science第二季读书会启动


推荐阅读

1. 几何深度学习:让物理世界拥有AI | 黄文炳分享整理
2. 探索“AI 大统一理论”:科学启发的机器学习理论
3. 柳昀哲:学习智能——如何高效地学习?| NeuroAI 读书会分享整理
4. 张江:第三代人工智能技术基础——从可微分编程到因果推理 | 集智学园全新课程
5. 加入集智学园VIP,获得20周年“涌现”学术年会入场券!
6. 加入集智,一起复杂!


点击“阅读原文”,报名读书会
 
打赏
 
更多>同类资讯
0相关评论

推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  皖ICP备20008326号-18
Powered By DESTOON