2025年标志着人工智能从聊天机器人向“代理工作流”的决定性转变,模型不再仅仅回答问题,而是开始执行多步骤任务。推理时扩展(RLVR)成为模型智能的新前沿,实现了自发的推理策略。与此同时,像Claude Code和Codex这样的编码代理成为自主AI执行的首批“杀手级应用”。
2025 marked the definitive shift from chatbots to "Agentic Workflows," where models move from answering questions to executing multi-step tasks. Inference-Time Scaling (RLVR) became the new frontier for model intelligence, enabling spontaneous reasoning strategies. Simultaneously, Coding Agents like Claude Code and Codex became the first "killer apps" for autonomous AI execution.
在主要实验室的战略动向方面,OpenAI发布了GPT-5,在所有模态中引入了“内置思维”和专家级推理能力,并推出了优化的o3/o4-mini系列以处理高速代理任务。为了确保未来的算力霸权,OpenAI还进行了包括8500亿美元“星际之门”项目在内的大规模基础设施押注。
Regarding strategic moves by major labs, OpenAI announced GPT-5, introducing "Built-in Thinking" and expert-level reasoning across all modalities, alongside the optimized o3/o4-mini series for high-speed agentic tasks. To secure future compute supremacy, OpenAI also made massive infrastructure bets, including the $850B Stargate Project.
Anthropic凭借Claude 3.7 Sonnet和Claude Code确立了其在企业AI和编码领域的领导地位,Claude Code作为一款突破性的编码代理,在数月内年化收入达到10亿美元。到2025年中期,Anthropic占据了40%的企业大语言模型(LLM)支出份额,成为高风险专业工程的首选合作伙伴。
Anthropic established leadership in Enterprise AI and Coding with Claude 3.7 Sonnet and Claude Code, a breakout coding agent that reached a $1B run-rate within months. By mid-2025, Anthropic captured 40% of enterprise LLM spend, becoming the preferred partner for high-stakes professional engineering.
谷歌将2025年定为“Gemini之年”,战略核心在于垂直整合与生态系统规模化。Gemini 2.5 Pro在数学和科学基准测试中表现优异,Gemini 3 Flash设定了速度和效率的新行业标准,而推理功能通过“AI模式”直接集成到了谷歌搜索生态系统中,利用Workspace和Android创造了极高的用户粘性。
Google defined 2025 as the "Year of Gemini," focusing on vertical integration and ecosystem scale. Gemini 2.5 Pro achieved top-tier performance in math and science benchmarks, Gemini 3 Flash set new industry standards for speed and efficiency, and reasoning was integrated directly into the Google Search ecosystem via "AI Mode," creating high stickiness across Workspace and Android.
从金融和市场角度来看,行业总资本支出超过4000亿美元,OpenAI的投后估值达到3000亿美元。然而,资本市场将关注点从单纯的能力转向了单位经济效益和可持续的收入模式。尽管OpenAI报告了130亿美元的收入,但因季度亏损超过120亿美元而面临审查,投资者正寻求在75个以上的商业LLM中进行市场整合。
From a financial and market perspective, total industry capex spending exceeded $400B, with OpenAI reaching a $300B post-money valuation. However, capital markets shifted focus from raw capability to unit economics and sustainable revenue models. While OpenAI reported $13B in revenue, it faced scrutiny due to quarterly losses exceeding $12B, and investors are looking for market rationalization among the 75+ commercial LLMs.
技术和职业领域也发生了深刻变化,价值从模型规模转向了使用工具和推理复杂代码库的能力。模型上下文协议(MCP)成为连接LLM与数据源的行业标准。软件工程被彻底改变,开发人员现在扮演系统架构师的角色,管理着如Claude Code这样的自主代理机群来处理实施细节。
The technical and professional landscape shifted profoundly, with value moving from model size to the ability to use tools and reason through complex codebases. The Model Context Protocol (MCP) emerged as the industry standard for connecting LLMs to data sources. Software engineering has been fundamentally altered, with developers now acting as System Architects managing fleets of autonomous agents like Claude Code to handle implementation details.
在全球竞争格局中,DeepSeek R1和阿里巴巴Qwen 3等“全球颠覆者”展示了以更低的成本实现前沿推理能力的潜力,并在全球排名中名列前茅。这种开放权重的对等性迫使闭源实验室大幅降低API价格,并通过卓越的代理生态系统来证明其“溢价”的合理性,因为基础模型能力正日益商品化。
In the competitive landscape, global disruptors like DeepSeek R1 and Alibaba Qwen 3 demonstrated the potential to achieve frontier-level reasoning at lower costs, consistently ranking among the top models globally. This open-weight parity forced closed-source labs to slash API pricing and justify "premium" pricing through superior Agentic Ecosystems, as base model capabilities became increasingly commoditized.
“推理时代”已成熟并进入“行动时代”,AI的价值现在由其在现实世界中自主运作的能力来定义。2025年是AI停止空谈、开始实干的一年。建议投资者关注代理基础设施层,企业应优先考虑数据就绪性和MCP兼容架构,而专业人士则需掌握多代理的编排能力。
The "Reasoning Era" has matured into the "Action Era," where AI's value is defined by its ability to operate autonomously in the real world. 2025 was the year AI stopped talking and started doing. Recommendations include investors focusing on the Agentic Infrastructure layer, enterprises prioritizing data readiness and MCP-compliant architectures, and professionals mastering the orchestration of multiple agents.
#AI #AgenticIntelligence #OpenAI #Anthropic #GoogleGemini #TechTrends2025 #MarketAnalysis










Learn by Doing with Steven 数能生智 | 社媒矩阵
? 预约交流 | Book a Call
? 主站与文章 | Website & Writing
? 社群矩阵 | Communities
?? 直接联系 | Direct Contacts
? 支持创作 | Support Steven’s Work
? 视频矩阵 | Video
? 哔哩哔哩(Steven数据漫谈) | |
? 网站 / 频道 / 平台 | Website
| LinkedIn Newsletter(Business) | |
? 社交平台 | Social
? 合作伙伴 | Collaborations
? 兴趣爱好 | Hobby
Learn by Doing with Steven 数能生智 | 播客矩阵
1) Steven Data Talk
“Steven Data Talk” — delivering the clearest conversations on cutting-edge AI, technology, innovation, business, and entrepreneurship.
Now available on Spotify, Apple Podcasts, YouTube, Amazon Music, Xiaoyuzhou, Ximalaya, and more.
Support the creator & explore all links:
https://linktr.ee/learnbydoingwithsteven
2) Steven 数据漫谈
《Steven数据漫谈》——用最清晰的方式,聊最前沿的人工智能、科技、创新、商业、创业思考。现已登陆 Spotify、Apple Podcasts、YouTube、Amazon Music、小宇宙、喜马拉雅 等平台。
所有链接,支持作者:https://linktr.ee/learnbydoingwithsteven
3) Steven AI Talk(多语)
“Steven AI Talk” — delivering the clearest conversations on cutting-edge AI, technology, innovation, business, and entrepreneurship with AI summarizations on various high quality source contents.
? Support the Creator & Access All Links
https://linktr.ee/learnbydoingwithsteven
4) YC 斯坦福创业课 2015 CS183B 精讲
通用免责声明Disclaimer





