推广 热搜: 采购方式  甲带  滤芯  气动隔膜泵  减速机  履带  减速机型号  带式称重给煤机  链式给煤机  无级变速机 

半导体行业HBM之“设备材料”深度分析:3D混合键合成发力点

   日期:2024-05-09 09:45:41     来源:网络整理    作者:本站编辑    浏览:3    评论:0    

文章转自: 未来智库; 报告出自:华泰证券

  HBM—突破“内存墙”   

CPU与存储之间“内存墙” :随着摩尔定律的不断迭代,CPU运行速度快速提升,CPU主频高达5GHz,而DRAM内存性能取决于电容充放电速度以及DRAM与CPU之间的接口带宽,存储性能提升远慢于CPU,DRAM内存带宽成为制约计算机性能发展的重要瓶颈;

DRAM:DDR4内存主频为2666~3200MHz,带宽为6.4GB/s,但是在AI应用中(高性能计算/数据中心),算力芯片的数据吞吐量峰值在TB/s级,主流的DRAM内存或显存带宽一般为几GB/s到几十GB/s量级,与算力芯片存在显著的差距,“内存墙”由此形成。以Transformer类模型为例,模型大小平均每两年翻410倍,AI硬件上的内存大小仅仅是以每年翻2倍的速率在增长;

内存墙问题不仅与内存容量大小有关,也包括内存的传输带宽;内存容量和传输的速度都大大落后于硬件的计算能力。

DRAM概念
ELEAD TECH

典型的DRAM中,每个芯片有八个DQ引脚(数据传输路径,用作处理器和存储器之间通信的数据总线,必须具备读写功能,所以具备双向特性),即数据输入/输出引脚;

组成DIMM模块单元后(双列直插式存储模块,安装在PCB板上的存储模块,包含多个存储芯片,被用作PC或者服务器中的主存储单元),共有64个DQ引脚。随着数据处理速度等方面的要求不断提高,数据传输量也不断增加,传统DRAM DQ引脚的数量已无法保证数据快速通过;

传统DRAM需要大量空间与CPU/GPU等处理器通信,同时封装的形式看需要通过引线键合或PCB进行连接,DRAM不可能对海量数据进行并行处理。

AI算力快速迭代,HBM为最强辅助
美国算力芯片禁令
ELEAD TECH

由于BIS 2022年针对高算力芯片的规则3A090 管控指标较高,英伟达等厂商通过降低芯片互联速率方式对中国持续供应,同时,美国商务部认为中国企业通过海外子公司或者其他海外渠道,规避许可证相关规定获取先进计算芯片。2023年新规修改了3A090芯片及相关物项的技术指标,扩大了针对高算力芯片的许可证要求及直接产品原则的适用范围,并增加了先进计算最终用途管控。

HBM核心—“连接”与“堆叠”

3D混合键合成趋势

TSV工艺流程(通用)
ELEAD TECH

TSV制造分为两种类型,孔底部不需要直接导电和孔底部需要直接导电连接,后者增加孔底部绝缘层去除。

HBM堆叠核心:MR-MUF(向上堆叠方式)

ELEAD TECH

SK海力士表示,通过先进的MR-MUF堆叠技术加强了工艺效率和产品性能的稳定性;随着对高速高容量的需求不断增加,散热问题预计将成为HBM产品持续迭代的重大技术障碍;

MR-MUF:将半导体芯片堆叠后,为了保护芯片和芯片之间的电路,在其空间中注入液体形态的保护材料,并固化的封装工艺技术。与每堆叠一个芯片铺上薄膜型材料的方式对比 工艺效率高,散热方面也更有效;

具体步骤:1)连接芯片的微凸块采用金属塑封材料;2)一次性融化所有的微凸块,连接芯片与电路;3)芯片与芯片之间或者芯片与载板之间的间隙填充,绝缘和塑封同时完成。

MR-MUF(Mass Reflow – Molded Underfill)
ELEAD TECH

MR-MUF:芯片之间用环氧模塑料作为填充材料,导热率比TC-NCF中的非导电薄膜高很多,鉴于GPU等高功率芯片散热管理的重要性,这是重要的优势之一; MR-MUF使用传统的倒装芯片大规模回流焊工艺堆叠芯片(整个吞吐量高得多)批量工艺堆栈整体执行一次回流焊。

晶圆级封装采用非导电膜NCF
ELEAD TECH

底部填充:使用环氧树脂模塑料EMC、胶和薄膜填充孔洞,实现接缝保护; 预填充过程中,芯片级封装和晶圆级封装采用的填充方法有所不同,对于芯片级封装,可以选择NCP或者NCF,对于晶圆级封装,NCF被作为底部填充的主材。

HBM测试
ELEAD TECH

HBM采用多层“已知良好堆叠芯片KGSD”设计,将4层或更多层 的DRAM芯片堆叠在基础逻辑芯片上,每层KGSD采用大量的TSV和 微凸块,对HBM产品的测试技术提出重要挑战; DRAM测试分为两部分: 晶圆级测试:晶圆老化WLBI、高低温测试和存储修复等 。封装级测试:高低温条件下的功能、电性能、电参数以及 老化应力测试等; HBM测试流程: 晶圆级测试,针对DRAM芯片和逻辑芯片,增加逻辑芯片测试; KGSD测试:包括老化应力测试、高低温条件下的功能、电 性能和电参数测试等; HBM KGSD裸片测试的挑战主要包括逻辑芯片测试、动态向量老 化应力测试、TSV测试、高速性能测试、PHYI/O测试以及2.5D SIP测试。

HBM核心设备材料,替代进行时...
Hybrid Bonding 混合键合(1)
ELEAD TECH

海力士正在加速开发新工艺“混合键合” ,截止目前, HBM的DRAM芯片之间通过“微凸块”材料进行连接,通过 混合键合,芯片可以在没有凸块的情况下连接,从而显著 减小芯片的厚度; 当间距小到20um以内,热压键合过程中细微倾斜使得钎料 变形挤出而发生桥连短路,难以进一步缩减互联间距;HBM芯片标准厚度为720um,预计2026年左右量产的第六代 HBM4需要纵向垂直堆叠16层DRAM芯片,当前的封装技术很 难让客户满意,所以混合键合的应用被认为是必然的趋势;2023年海力士用于第三代HBM产品(HBM2e)测试混合键合 技术,规格低于HBM4产品; 同时海力士拟计划将新一代的HBM与逻辑芯片堆叠在一起, 取消硅中介层。

Hybrid Bonding 混合键合(2)
ELEAD TECH

与台积电传统的微凸点3D TSV集成对比,无凸点SoIC集成的12层存储器在垂直方向上的尺寸下降高达64%,带宽密度增加28%,能源消耗下降19%; 无凸点3D集成技术可实现超高密度的芯片垂直互连,继续推动芯片向高性能、微型化和低功耗方向发展。

混合键合对比分析(W2Wvs D2W)
ELEAD TECH

W2W键合是相对成熟的工艺,也不是特别昂贵,目前,W2W键合可以实现50nm以下的对准精度,W2W存在的主要问题是无法选择已经良好的芯片(KGD)进行封装,会导致将有缺陷的芯片贴合至优质芯片,从而导致优质芯片的损失,所以W2W一般应用于良率非常高的晶圆; D2W方式可以应用良率相对较差但仍然具备商业价值的产品,D2W在键合方面更具挑战性,因为每个晶圆都需要更多的键合步骤,会引入颗粒污染; 根据Semianalysis参考数据看(并非实际成本数据),小芯片D2W更贵,随着芯片面积的增加,W2W不具备价格优势。

混合键合层工艺
ELEAD TECH

混合键合层带有细间距铜通孔图案的介电薄膜,不论是D2W还是 W2W,通过BEOL金属化处理的两片晶圆均需要经历键合电介质CVD; 阻挡层沉积、铜填充、电介质的平坦化(带有轻微的铜凹进); 电介质有四种可选材料:二氧化硅SiO2、碳氮化硅SiCN、氮氧化 硅SiON,其中,SiCN由于优异的铜扩散阻挡性能而成为主要选择, AMAT和Lam、KLA是PECVD系统供应商;国内拓荆科技是PECVD的领 先企业; 混合键合层工艺包括电介质PECVD、铜ECD(铜电化学沉积)、 CMP、等离子体激活、键合、分割等。

影响键合质量的因素:1)晶圆表面的洁净度和粗糙度;2)表面的活化;3)退火处理的条件;4)铜衬垫的凹陷和凸起工艺。引入等离子体预处理步骤和亲水性的键合技术,能在低退火温度下提升键合粘附性。

减薄与CMP集成化趋势
ELEAD TECH

晶圆减薄能去除晶圆背面多余的基体材料,进而减小芯片封 装体积、提高芯片散热效率和电气性能,是实现3D集成电路 制造的关键技术之一,例如3D IC中晶圆的键合工艺,减薄是 必要的工序; 晶圆在被磨削减薄后需要再经过CMP处理,从而获得表面光滑 平整的晶圆。但是当晶圆被减薄到150um以下时,传输搬运成 为较大风险,尤其是300mm大尺寸规格晶圆物理特性更脆弱。 磨削和CMP设备的集成可以减少晶圆的搬运次数,先进封装中 减薄设备正在向集成化、一体化的方向发展; 此前国内先进封装减薄设备基本被国外垄断,日本迪斯科和 日本东京精密。2021年9月,华海清科研发的首台12英寸超精 密晶圆减薄机Versatile-GP 300正式出机,集精密硅片背面 磨削减薄、化学机械抛光、硅片清晰功能于一体的专用硅片 减薄设备,可满足集成电路先进制程中的超精密晶圆减薄工艺需求。

屹立芯创·除泡品类开创者
公司简介
屹立芯创作为除泡品类开创者,以核心的热流和气压两大技术,持续自主研发与制造除泡品类体系,提升良率助力产业发展,专注解决半导体先进封装中的气泡问题,为客户定制半导体产业先进封装领域,多种制程工艺中的气泡整体解决方案,现已成功赋能半导体、汽车、新能源、5G/IoT等细分领域。
 点击阅读原文 可预约除泡压膜测试
 
打赏
 
更多>同类资讯
0相关评论

推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  皖ICP备20008326号-18
Powered By DESTOON