
二、工业现场仪表的一般构成
工业现场仪表应用于工业生产过程控制系统中,其作用是,采样现场传感器信号,根据预设定的算法,计算采样值获得实际现场被监视物理量的值,并将实际现场物理状况通过通信总线或者4~20mA电流信号输出到主控制中心。其一般的系统构成图如图1所示。
从图1可以看到,传感器信号输入到工业仪表,首先是EMC防护电路,因工业现场的电气环境复杂,存在强电设备(如大功率电机)、高频开关设备(如变频器),这些设备在启停动作时会产生较大的浪涌及尖峰脉冲,这类的干扰包含比较大的能量,通过EMC防护器件,如压敏电阻、TVS管等器件吸收这类干扰,保护后级的电路不会因这类干扰造成损坏。传感器信号经EMC防护电路后输入到输入端的隔离放大器进行信号的隔离、调理,信号隔离能保证仪表内部电路与外部传感器形成地线阻断,消除共模干扰,从而消除地电位差引起的地线环流,一方面可以确保传感器信号的采样精度不受干扰的影响,一方面可以保护内部MCU系统不会因大的共模电压造成器件的损坏;信号调理,通过信号类型的转换及信号放大将传感器信号线性放大成满足ADC采样的信号类型及范围,保证调理后的信号范围和ADC信号输入范围匹配,从而保证ADC采样精度。MCU将经过ADC数字量化后的传感器信号进行数字运算,经过数字滤波,线性化运算等一系列的运算后获得现场物理量的实际状况,然后输出到显示面板,同时将获得的现场物理量值按照线性比例输出到DAC电路,DAC电路输出电压信号,要想形成4~20mA电流信号,还需要经过输出端的隔离放大器将电压信号隔离调理成4~20mA的电流信号输出。当然信号输出端也需要设计EMC防护电路。
工业智能仪表一般都带有通信接口,目前常见的有485通信接口,CAN通信接口,可以通过通信总线直接将现场物理量值以数字方式上传,同时还能通过总线接口完成如仪表参数设置、仪表运行状态查询、仪表的自校准等工作。485通信、CAN通信采用的都是差分信号通信,本身有较强的抗干扰能力,但通信接口IC能承受的共模输入电压范围都有限,尤其是485的接口IC,一般在-7V~+12V之间,在较长距离的通信中,地电位差形成的共模干扰很容易造成通信接口IC的损坏,所以通信接口也必须进行隔离设计,以提高系统可靠性。
#工作Vlog #工业设计
工业现场仪表应用于工业生产过程控制系统中,其作用是,采样现场传感器信号,根据预设定的算法,计算采样值获得实际现场被监视物理量的值,并将实际现场物理状况通过通信总线或者4~20mA电流信号输出到主控制中心。其一般的系统构成图如图1所示。
从图1可以看到,传感器信号输入到工业仪表,首先是EMC防护电路,因工业现场的电气环境复杂,存在强电设备(如大功率电机)、高频开关设备(如变频器),这些设备在启停动作时会产生较大的浪涌及尖峰脉冲,这类的干扰包含比较大的能量,通过EMC防护器件,如压敏电阻、TVS管等器件吸收这类干扰,保护后级的电路不会因这类干扰造成损坏。传感器信号经EMC防护电路后输入到输入端的隔离放大器进行信号的隔离、调理,信号隔离能保证仪表内部电路与外部传感器形成地线阻断,消除共模干扰,从而消除地电位差引起的地线环流,一方面可以确保传感器信号的采样精度不受干扰的影响,一方面可以保护内部MCU系统不会因大的共模电压造成器件的损坏;信号调理,通过信号类型的转换及信号放大将传感器信号线性放大成满足ADC采样的信号类型及范围,保证调理后的信号范围和ADC信号输入范围匹配,从而保证ADC采样精度。MCU将经过ADC数字量化后的传感器信号进行数字运算,经过数字滤波,线性化运算等一系列的运算后获得现场物理量的实际状况,然后输出到显示面板,同时将获得的现场物理量值按照线性比例输出到DAC电路,DAC电路输出电压信号,要想形成4~20mA电流信号,还需要经过输出端的隔离放大器将电压信号隔离调理成4~20mA的电流信号输出。当然信号输出端也需要设计EMC防护电路。
工业智能仪表一般都带有通信接口,目前常见的有485通信接口,CAN通信接口,可以通过通信总线直接将现场物理量值以数字方式上传,同时还能通过总线接口完成如仪表参数设置、仪表运行状态查询、仪表的自校准等工作。485通信、CAN通信采用的都是差分信号通信,本身有较强的抗干扰能力,但通信接口IC能承受的共模输入电压范围都有限,尤其是485的接口IC,一般在-7V~+12V之间,在较长距离的通信中,地电位差形成的共模干扰很容易造成通信接口IC的损坏,所以通信接口也必须进行隔离设计,以提高系统可靠性。
#工作Vlog #工业设计